
Acta Cryst. (1959). 12, 794 

The Treatment of Errors in the Isomorphous Replacement Method 

BY D. M. BLOW AND F. H. C. CRICK 
Medical Research Council Unit for .Mokcular Biology, Cavendish L&oratory, Cambriae, England 

(Received 28 July 1958 a& in revised form 5 November 1958) 

This treatment is intended for complex structures where conventional refinement is impossible. 
A method is described for assessing the errors which arise in applying the isomorphous replacement 
method. Both errors due to non-isomorphism and observational errors are considered. Probability 
functions are derived which give, in the centrosymmetric case, the probability of a correct sign 
determination, and in the non-centrosymmetric case the relative probabilities of different phases. 
These probabilities may be used to calculate a ‘best’ Fourier, in which the errors in electron density 
are minimized, and also to estimate the r.m.8. error in this ‘best’ Fourier. 

There are two steps in the application of the isomor- 
phous replacement method. The first is the determina- 
tion of the position of the outstanding features 
(usually a small number of heavy atoms) which dif- 
ferentiate a pair of isomorphous structures. The contri- 
bution fC of this part of the structure to the structure 
factors may then be calculated. The second step is 
the use of these calculated contributions to determine 
the phases of the reflexions. This is done by comparing 
them with the observed intensity differences. In this 
way the structure may be determined. 

This paper is concerned with the second step. There 
will be many reflexions for which fc is very small. 
The determination of phase will be correspondingly 
poor. How should these reflexions be treated2 In 
non-centrosymmetric structures, as is well known, 

unambiguous phase determinations are possible only 
if at least three isomorphous compounds are available. 
How should the results from the two pairs be com- 
bined ? With simple structures where atoms are 
resolved, a trial structure can be obtained, and refine- 
ment made, for instance by the least-squares method. 
With a large protein, there is no immediate prospect 
of resolving the individual atoms and therefore no 
way of refinement from a trial structure. The accuracy 
of the final Fourier is dependent on the best choice 
of weights and phases during the second step of the 
calculation. There will be cases of intermediate com- 
plexity where the right trial structure will be found 
only if the second step is done accurately enough. 

We will describe a method for treating this question 
as rigorously as possible. A structural study where the 
method has been put to practical use has been published 
elsewhere (Blow, 1958). 

Estimation of error 
The errors with which we are concerned are those 
which arise in the use of the isomorphous replacement 
method. It will be assumed that the ‘true’ structure 
would be the Fourier transform of accurately observed 
structure factors, given the proper phases. Errors 
which arise due to series termination and extinction 
are not considered. 

Let F, Fs be the structure factors of two isomor- 
phous compounds, the latter containing additional 
heavy atoms. We will define 

f,= FB-F. (1) 
The basis of the isomorphous replacement method is 
to calculate an approximation to fH, which we will 
call fc, usually by assuming the differences are entirely 
due to heavy atoms whose coordinates have been 
determined. (1) then gives information about the 
phases. 

Centroaymmetric cuse 

If the structures are centrosymmetric, then F, FB, 
fe, fC are all real. Either 

Itl= IF,-Fi (.Qa) 
or 

Itl = IF,+Fl PI 

the latter case arising only when the signs of FR and 
F are different. If we exclude all cases where 
F, +F <fC(OOO), the maximum possible value of f,, 
we can approach certainty that @a) applies. In these 
cases, a direct assessment of error may be made. 
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We will use the symbols F, and .F to represent the 
observed amplitudes of FB and F, and define AFObS = 
F,- F. If there were no error, whenever (2a) applies 
[AF,,,I and l&l would always be equal. The quantity 
E= IAF,,,.I - lfcl is a measure of the total error. 

The distribution of [El has been examined for the 
hOZ’s of horse haemoglobin (Cullis, Dintzis & Perutz, 
1957). The distribution closely follows the Gaussian 
distribution of random errors; the mean value usually 
varies with sin 8 (Figs. 1 and 2). 
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Fig. 1. The mean value of IldF,bs.l- If,Jl plotted as a function 
of sin 8 for various isomorphous derivatives of horse 
haemoglobin. 

X X - mercury acetate : 
X haemoglobin compound 

0 0 dimercury acetic rwid: _-----_ 
0 haemoglobin compound 

q Cl p-chloro-mercuribenzoate: -.-.-.- 
q haemoglobin compound 

(Taken from the data of Cullis, Diutzis & Perutz (1967). 
We are grateful to Miss A. F. Cullis for preparing this figure.) 
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Fig. 2. Histogram showing the frequency distribution of Fig. 2. Histogram showing the frequency distribution of 
1 IAFobs.l - lfcl 1 for dimercury acetic aoid haemogIobin. The 1 IAFobs.l - lfcl 1 for dimercury acetic aoid haemogIobin. The 
full line is a Gaussian curve with the same mean souare full line is a Gaussian curve with the same mean souare 
value. (Taken from the data of Cullis, Dint& & Perutz 
(1957).) 

These errors can be thought of as arising from two 
distinct causes. They arise partly from the difference 
E between fA and the estimate &. This is partly due to 
errors in placing and weighting the heavy atoms, 
wrongly estimated temperature factors and so on, 

but also to the differences which arise from incomplete 
isomorphism, in some cases caused by slight shifts 
and rotations of the molecules (Crick & Magdoff, 
1956), and perhaps by the introduction of lighter 
atoms into the structure whose parameters have not 
been determined. 

A separate source of error is experimental inaccuracy 
in the determination of the structure amplitudes, 
F, Fp We will call 

~=WLl-IlF+lFli . (3) 
Its r.m.s. value (IQ is easily checked by comparing 
values of F derived from different crystals of the same 
compound. (This method of estimation neglects some 
systematic errors, such as that due to absorption. 
But since isomorphous replacement depends on the 
comparison of intensities from similar crystals, these 
errors are unimportant in calculating the differences.) 

1.. . . * - -. *. 
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Ifi 
Fig. 3. R.m.s. difference between independent observations of 

F from two similar haemoglobin crystals. Each symbol 
represents the average of about 10 reflexions of similar F. 
The results come from two different experiments. The data 
were taken from precession photographs and the intensities 
measured photometrically (Blow, 1958). 

The result of such a check with the Qkl’s of horse 
haemoglobin is shown in Fig. 3. (S) was found to be 
a function of F. Since 

(Ey=(d)=t(&)* (4) 
the estimates of (S) and (E) permit (c) to be estimated. 

Non-centroeymmetric Case 
In the non-centrosymmetric case F, F,, fH have 

arbitrary phase and there is no direct means of com- 
paring observed and calculated differences, though 
(6) can be estimated in the same way as before. A 
reasonable estimate of (E) will have to be made. Any 
non-centrosymmetric space groups whose symmetry 
includes dyads or screw dyada possess centrosym- 
metric zones, and in these cases it is reasonable to use 
this zone to estimate (s) for the whole structure. 
f, need no longer be real, and the estimate of it may 
be thought of as a circularly symmetrical ‘cloud’ of 
uncertainty centred on fc. We shall now consider how 
the breadth of this cloud may be estimated. 

Consider the unit cell split up into two similar units 
related by a dyad or a screw apa. The heavy atom 
contributions of these two units are fl and fc. When 
projected down the dyad, the structure appears 
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centrosymmetric; thus in the zone corresponding to 
this projection the relation 

fe = ff 

will hold. Suppose an error EI has been made in estim- 
ating fi. Then in this zone (see Fig. 4) 

Fig. 4. 

f,= (fi)e+El+ (f&+Ez = r,+ a+$ . 

The error in estimating fx is E where 
(5) 

IE] = je1+$l = 21611 cos q’ Pa) 
and p7’ is the phase of fr. We may assume v’ is random, 
so that 

The r.m.s. value (s) in this zone may be assessed in 
just the same way as for a centrosymmetrio structure. 

To apply this estimate to reflexiong not in the 
centrosymmetric zone we have to assume that lel] 
and l&s1 have the same distribution for these other 
reflexions as they do for the centros-ymmetric re- 
flexions. The first equality in equation (5) applies, 
but ~2 can no longer be replaced by ET. (6) becomes 

IEI=[Er+Ezl=(E:+~--lEll(Ezl COS#‘)* (W 
where v” is the angle between EI and us and is assumed 
random, so we find (s)s=2$ as before. The circularly 
symmetrical cloud of uncertainty around 5 in the 
non-centrosymmetric case has the same breadth as the 
linear probability function representing the estimate 
of fa in the centro-symmetric case, namely (E). In 
systems with only one axis of symmetry there are 
uncertainties about the heavy atom co-ordinates 
parallel to this axis, which do not affect the centro- 
symmetric projection (Harker, 1956; Perutz, 1956). 
In these cases a further allowance needs to be made 
for the corresponding uncertainty in the phase of f,. 

‘The best Fourier’ 
Let us suppose we have some information about the 

value of a structure factor F(hkl). To include the non- 
centrosymmetric case, we will put 

F(hkZ)=A(hkZ)+iB(hkE)=Fei+’ PI 

though in the centrosymmetric case it will be known 
that B is always zero. We can represent the informa- 

tion we have about F on an Argand diagram with 
A and B as coordinates. This can be done by plotting 
the probability that F lies at any point on the diagram. 

If, for instance, the amplitude IFI had been mea- 
sured with perfect accuracy but there was no informa- 
tion about the phase, the diagram would in the non- 
centrosymmetrio case consist of .a circle radius JFI, 
centred on the origin. In the centrosymmetric case it 
would consist of two equal points of probability den- 
sity, F= + IFI and F= - IFI. In practice, neither 
amplitude nor phase is known with perfect accuracy, 
and the probability will be a smoothly varying func- 
tion, representing all available information about 
F(hkZ). We will call this function P&A, B), and it 
will be normalised so that 

SF 

+cO 
Pj,rr(A, B)dAdB= 1 . 

l-co (9) 

In order to portray this information in structural 
terms, it is necessary to make a Fourier transforma- 
tion. The most general way to do this would be to work 
out the transforms for all possible values of A and B 
for each hkl. The probability of a transform being the 
correct one would be the product 

~lP~rr(A,B). (10) 

In this way one can imagine obtaining a continuum 
of structures, each with an assigned probability. The 
structures whose probability fell below a certain value 
might be rejected, and the remainder examined to see 
what characteristics they had in common. 

Such an idealised procedure could not be under- 
taken in practice. However, these considerations enable 
us to define two transforms which can be calculated 
more easily. 

The more obvious is the ‘most probabIe Fourier’. 
This may be calculated by choosing the value of F(hkE) 
for each reflexion corresponding to the highest value 
of P&A, B). This corresponds to using (1) and 
neglecting all errors. This Fourier will clearly have the 
maximum value of ,lJ P&A, B) and is the most 
likely to be correct. 

If the form of the probability functions PJ,LI(A, B) 
were usually unimodal, with a single peak on the dia- 
gram, the most probable Fourier would not be a bad 
function to use, though it might tend to give too much 
weight to uncertain phases, Unfortunately, it turns 
out that in the isomorphous replacement method 
there is a strong tendency for Pt,kl(A, B) to be bi- 
modal. When two peaks have nearly equal weight, 
there is a strong chance of making a large error, if the 
most probable value of F is used. A compromise is 
clearly needed. It will now be shown that the centroid 
of the distribution provides just the required com- 
promise. 

For the time being we shall assume that only one 
reflexion F(hkE), and its conjugate F(m), are un- 
known ; the others are known with perfect accuracy. 
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(The treatment can be extended directly to the case 
where all reflexions are unknown.) Suppose that we 
decide to use some value F,(M) for this reflexion, 
and that the true value is P&M). In calculating a 
Fourier synthesis, we introduce an error 

Aehar= +[(Fo-Fr) exp {-2ni(hsfky+Zz)} 

+ (F,* -Fz) exp {2ni(hz+ ky+ Zz)]] . (11) 
The mean square value of de over the whole unit 
cell is 

In practice, our knowledge of Fr can only be ex- 
pressed in the form of a probability distribution, and 
we must take a weighted mean over all possible 
values : 

(Aed2= kss: Pm(A, B)[F, - (A + iB)]%fA dB, (13) 
m 

which we may rewrite 

(A e)& = 2rs/ V2 , thus defining r. 

P is the r.m.s. length of the vector between F. and the 
probability function we use to describe the observa- 
tions of F. It is our estimate of the error introduced 
in deciding to use Fo. The integral is exactly analogous 
to the expression for the radius of gyration r of a 
plane lamina with density Phk:r(A , B) about the point 
Fo. As in the parallel-axes theorem of mechanics, it 
is easy to show that this integral has its minimum 
value when 

Fo= Si;=l(A, B)(A+aB)dAdB; (14) 

that is, when F. is the centroid of the distribution. 
We define the ‘best Fourier’ as that Fourier tram- 

form which is expected to have the minimum mean square 
difference from the Fourier transform of the true F’s 
when averaged over the whole unit cell. The best Fourier 
is the Fourier transform obtained by using the centrok? 
of the probability distribution for F. 

Application to centrosymmetric case 
The probability distribution in the centrosymmetric 
case is a function of A alone, since B must be zero. 
In general, it will have two parts, centred on +F and 
-F, which will be represented by Gaussian curves of 
breadth (6’) (Fig. 5). (It should be noted that (8’) is 
not quite the same as (8) : for errors due to absorption 
etc., which are eliminated in comparing two similar 
crystals are important in estimating the true magni- 
tude of (6’).) 

The relative weight of these two parts of the distri- 
bution is our estimate of the probability of a correct 
sign determination. This estimate is made by compar- 

ing the discrepanoies between theory and experiment 
with the estimate of error (E), assuming 

(a) F is positive ; 
(b) F is negative. 

When IFI is small it will be important to remember 
that FH need not have the same sign as F (Table 1). 

Table 1. Discrepancy between theory and experiment 
in various cu8e8 

Sign of F Sign of FH Discrepancy 

+ + fc-(Fll-P) 
+ - fc+va+FF) 
- + fc- (-FH+m 
- - fc+(PR--F) 

The probability of the two cases are then as follows: 

Probability F is positive 

P+=N exp 
[ t 

(fc- [FA-FI)~ - 
2<E)2 1 

+exp - I 
(fc- [FB+KI)~ 

%Q2 II (154 

Probability F is negative 

p-=jv exp - (fc+~&-Q2} 
[ 1 

+exp _ (fe+[F~+F])2 
c %V2 II W) 

where N is a normalising factor such that P, + P- = 1. 
Rearranging these gives 

The expressions may be simplified if fe and E are 
small compared to (P + Pa). In this case the possibility 
of F and FH having different sign may be neglected 
and the second terms in (15) disappear. Under these 
conditions 

N-1=2exp - 
C 

cF-$&+“} co& c(=$i!} . 

If we write 
t=f,(F’,-F)/(E)2, (17) 

P,, P- may be written 

P, = e’/2 cash t 
P- = e-‘/2 cash t . w 

Thus when (F-I-F,) is large compared to (E), ]%I, 
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the value of F which must be used to give the best 
Fourier is 

F,=(P,- PJF = F tnnh t (19) 
and the mean square value of (Fo - Fr)s, taken over 
the whole probability distribution is 

9.2 = (Fo-F)sP++(FofP)2P-+(6’)2 
= F2 sechs t + (a’)2 . (20) 

It will help to discuss these results in terms of a 
concrete example. The data given below are typical 
of a weak reflexion in haemoglobin where the ex- 
perimenter would certainly doubt the significance of 
his sign determination: 

F = 200, .Fx= 225, fC = + 75 (electrons/unit cell). 

Typical estimates of (ZC) and (6’) would be 

(E} = 50, (sl) = 36 (electrons/unit cell). 

The discrepancies in the results according to the 
various possible sign combinations may be found from 
Table 1, and are set out in Table 2. Using equations 

Table 2. Probabilities of various sign combinations 
in an actual cuse: 

F=200, F,=225, fc=-l-75, (E)=50 
Probability, 

t3asuming 
Sign Sign Discrepancy Gaussian error 
of F of FR (from Table 1) distribution 

-I- + 50= (E) NO-t = 0400N 
+ - 500=10(B) NCS-SO = lo-“N 
- + 350= 7(E) Ns-2’2”‘” = 1,,-‘ON 

UN= 2(E) Nk = 0.135N 

(15), after finding the norm&sing factor N, we obtain 
P+=O-818, P-=0.182. 

Alternatively, using the approximate treatment we 
find t=O-750, giving exactly the above result. Even 
when F is only three times I&l, the inaccuracy is quite 
negligible. 

Equations (19) and (20) give 

F,= +127, rx=23,800+ 1,200= 158s. 

The treatment thus shows that this reflexion should 
be put into the Fourier synthesis with a weight of 
about 0.6, and even then the radius of ,gation is 
surprisingly large. It is instructive to compare it with 
the values corresponding to 

(a) giving the reflexion full weight with positive 
sign ; 

(b) omitting the reflexion from the synthesis. 

This corresponds to finding the radius of gyration of 
the diagram (Fig. 5) about the point + 200 and about 
the origin, respectively. The results are 

(a) (4OOsxO~182)+36s=174s 
(b) 2002+352=2032. 

Fb-127 

Fig. 5. Probability distribution for F in a centrosymmetric 
wee. Calculated for 

F=ZOO, Fa=225, fc=fi’5, (6’)=35, (E)=50. 

We may take estimate (a), the mean square error due 
to omitting the reflexion, as a standard. In this case, 
when we are only about 80% sure of a correct sign 
determination, the mean square error due to giving 
the reflexion full weight is about 0.73 of the standard. 
By using the correct weighting function, it may be 
further reduced to 0.60 of the standard. 

V I - 

W’O i t2 3 o I *i 2 

Fig. 6. Curves showing \u\ the probatiity F is positive, 
P+=exp (t)/2 cash 1; (b) the best weight to apply to 
F, Fo/F=tanh L; (c) the mean square error when this 
weight is used, ra/p =sechz t; (d) the mean square error 
without weighting, 4P-. 

Fig. 6 shows P,, the best weight PO/F and the 
r.m.s. error r/F as a function of t. The curves have 
been calculated from equations (IS)-(20), assuming 
that (S’) makes a negligible contribution to r. For 
comparison, the r.m.s. error due to including the term 
with full positive weight is also plotted (this is found 
to be 4PJ. If an experimenter does not wish to use 
weighting factors, he should omit from his Fourier 
synthesis all terms where he is less than 75% sure of 
the signs, (i.e. ]P,- iI< f) since to include them 
would make his synthesis worse. 

Non-centrosymmetric case 
The probability distribution in the non-centrosym- 
metric case has a much more complicated form and 
we cannot attempt to treat it so rigorously. Initially 
we shall assume that IFI is known accurately, and that 
the observational error 6 lies entirely in the observation 
of IFal, The extent to which this assumption is justified 
will be considered later. 
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Neglecting error, phases may be determined by 
forming a closed triangle from the known vector & 
and the known amplitudes F, FH (Fig. 7(a)). (Since 

4i 0 

F 

rP 

P 

FH 

(0) (b) 

Fig. 7. Effect of errors on phase determination: 
non-centrosymmetric case. (See text). 

this triangle may be drawn in two ways, there is still 
an ambiguity in the phase which can only be settled 
by using another isomorphous replacement in whioh 
the vector & has a different argument.) Then 

FR=F2+c+ZFlfel cos tp . (21) 
To deal with errors we have to consider F,, f, aa 

represented by probability functions. In drawing these 
on the diagram we shall consider the vertex 0 of the 
triangle as a fixed point (Fig. 7(b)). The two prob- 
ability functions may now be combined into one, 
showing the probability that the point marked P 
falls at that point in the diagram. This distribution is 
the convolution of the two previous ones; if IfJ is 
much smaller than F and FB, the result is close to 
a Gaussian of elliptical contour with major axis 
r/((.s)2+(6)2) and minor axis (e) (Fig. 7(c)). Moving 
P along the minor axis of the ellipse has little effect 
on the phase of F relative to that of f,, which is what 
we are trying to determine. So far as this phase is 
concerned, the probability function may be repre- 
sented by its projection on its major axis, which is 
very nearly a Gaussian of breadth v((s)2+(S)2) =(E) 
(Fig. 7(d)). This is clearly equivalent to regarding the 
whole error as residing in the determination of F,+ 

In practice, errors will occur in the determination of 
both F and F,. To show that an error in F causea a 
phase error of the same magnitude as an error in FH, 
(21) may be differentiated with respect to these two 
quantities. So long as IfCl is small compared to F, Fa 
we find 

dg, dg, 
dw- -dPa’ 

A Cl2 

Thus the assumption that all the error lie.9 in the 
determination of F, doea not affect the magnitude 
of the phase error. All these approximations are most 
accurate when F and FH are large, which is when 
estimation of error is most important. We can be 
satisfied with a much cruder estimate for the weaker 
terms. 

Using the approximate result given above, we can 
now estimate the probability, from the observations, 
of a particular phase, v, being the true phase. This is 
done by finding the error x(q) needed to be added to 
the observed FH to close the triangle when F is given 
some phase q. Using the cosine law (21) we have 

Tbe probability P(F) of a given phase is 

N exp { -x2/2E2) , 

where N is a normalising factor such that 

s 

2n 
P(q)@=1 . 

0 

90 180 270 

(23) 

Phase 

Fig. 8. Derivation of a phase probability curve in a typical case. 
(o) Error x involved in closing the phase triangle, as 8 
function of phase. The full line and the dotted line represent 
results from different isomorphous replacements. Lb) Rela- 
tive probability of the ph&es, as&kg Gauss& error 
distribution. (c) Product of the two ourves shown in (b), 
showing the joint phase probability curve, resulting from 
taking all the information together. The ambiguity is partly 
resolved. 

53 
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This is inconvenient to handle analytically, and a 
graphical method has been developed which can be 
used very rapidly. This consists of two rulers, hinged 
together, each of which carries a cursor. One cursor 
is pivoted at the centre of the coordinate system; 
the length of the attached ruler represents F. The 
length of the other represents Fx, and its cursor 
carries a scale graduated directly in units of x2/(R)2. 
(A variety of scales is made for different values of 
(E)). The vector fC is represented by laying a marker 
on the baseboard. The probability of any phase y may 
be estimated by setting F to the appropriate phase 
and reading off the value of x2/(E)2 from the cursor 
when the triangle is closed. This is proportional to 
1% (P(v)/W 

Fig. 8 illustrates the way these values of xz/(E)z 
may be used to calculate the relative probabilities of 
various phases. As already mentioned, B single iso- 
morphous replacement gives an ambiguous result for 
the phase. This ambiguity may be resolved by the use 
of a further member of the isomorphous series for 
which the vector f, has a different phase. The prob- 
abilities may be multiplied together to give a joint 
probability curve. When this product has been taken 
over all pairs of compounds in the isomorphous series, 
the curve gives all available information about the 
phase of the reflexion. 

+ 

Fig. 9. The phase probability curve of Fig. 8(c), replotted on 
an Argand diagram. The centroid of the whole distribution, 
and of each of its parts, is indicated. 

This phase probability curve may be used to plot a 
probability map on an Argand diagram as previously 
described (Fig. 9). (The breadth of the annular region 
is again (a), as in t,he centrosymmetric case). In 
order to obtain the ‘best Fourier’, we need a way of 
finding the centroid of such a probability map. We 
also need B method of estimating the radms of gyra- 

tion, r, since this will be used to give a measure of 
the accuracy of the ‘best Fourier’. 

In practice, these phase probability curves turn out 
to be of two types. One of these, the unimodal type, 
may be closely represented by a Gaussian probability 
distribution of phase; the other, the bimodal type, is 
close to the sum of two Gaussians which have the same 
breadth, given appropriate weights. It is shown in the 
appendix that the centroid of such a unimodal Gaus- 
sian distribution lies at a radius F exp (- 4~2) from 
the origin, where u radians is the breadth of the Gaus- 
sian. In the case where the probability curve is uni- 
modal, this is the weight which must be given to the 
reflexion in the ‘best Fourier’. In cases like that 
illustrated in Figs 7 and 8, where the curve is bimodal, 
the weighted mean of two such centroids must be 
used. 

In the appendix the radius of gyration, r, has also 
been calculated. Allowing for the uncertainty (6’) in 
the magnitude of IFI, the result, is 

rz=F2(1-exp (- 02))+(&)2. (24) 

The accuracy of the ‘best Fourier’ 
Previous treatments of errors in crystallographic 
results have usually been concerned with the accuracy 
of atomic coordinates. Here we are chiefly interested 
in cases with no prospect of resolving the atomic 
positions, and since no refinement can be carried out 
the errors may be much larger than in the conventional 
treatments. However, we have found that an approach 
similar to that of Cruickshank (1949) may be used. 

Using the weighting systems given above a ‘best 
l?ourier’ may be calculated. The estimates of rt may 
now be used to form an idea of how accurate this 
Fourier is. This meens, in principle, considering the 
probability of other Fouriers, where terms are given 
different values, and seeing to what extent they agree 
with the ‘best Fourier’. 

The r.m.s. error in electron density due to a single 
term in the synthesis is given by (12). 7-2 is the estimate 
of the mean value of (Fo-F,)2 for a particular term. 
The central limit theorem states, under very general 
conditions about the distribution of the de’s, that 
if there is a very large number of them of a similar 
order of magnitude, the total error 

5 @ toti = z A fi?hkl (25) 

will have a normal probability distribution (Cramer, 
1937). The r.m.s. value 

2mm 00 
<A etotal~2 = 72 *.. *se /&@ (26) 

is the standard error of electron density. 
In this way it is possible to allocate a level of 

significance to all the features in the Fourier. The 
accuracy of the ‘best Fourier’ will usually be the same 
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throughout the unit cell; except that in some space 
groups there will be special positions where errors are 
larger because exp (Zn~(kz+ky+Zz)} is unity for all 
permitted terms. Occasionally there may be special 
circumstances which introduce a small number of 
overpoweringly large error terms-m this case the 
above conditions are not satisfied, and a normal 
distribution of this kind cannot be assumed. A case 
of this sort is discussed in detail by Blow (1958). 
Another approach would be to synthesize the com- 
plete function (d~toti)2(z, y, z) from the values of 
+(hkl). 

Conclusion 
We have described a method for minimising the effect 
of experimental errors on the results obtained by the 
isomorphous replacement method. A method for 
estimating the accuracy of the results has also been 
given. It may be asked whether it is worth while 
carrying out detailed calculations of this kind in 
practical cases. 

Methods of the kind we have described here are 
laborious, and our experience with them is limited to 
two of the projections of haemoglobin-one centro- 
symmetric (Bragg & Perutz, 1954), and one non- 
centrosymmetric (Blow, 1958). The use of complicated 
weighting functions makes only small changes in the 
appearance of the final Fourier. More important effects 
arise because the cautious crystallographer prefers to 
omit from the Fourier synthesis terms whose phase 
is uncertain. Often a Fourier can be made worse by 
this omission, despite the uncertainty. It is in these 
cases that a reasonable estimate of error and a simple 
weighting function can be most useful. 

What is more important in the case of proteins is 
to have a quantitative assessment of the accuracy of 
the final Fourier, at least in a few sample cases. The 
errors may appear so large that the validity of the 
results may be doubted; however, it turns out that 
with the large number of terms involved in a three- 
dimensional analysis, highly significant results may be 
obtained. (Blow, 1958; Kendrew et aE., 1958). In this 
way the results of X-ray studies of proteins may be 
interpreted on an objective basis. 

APPENDIX 

Calculation of weight when phase probability 
curve is a Gaussian 

Fixed p?uzse error 

First consider the case where there is a known phase 
error, a, in the phase of a reflection. Its amplitude, F, 
is assumed to be known accurately. If we include the 
term in a Fourier synthesis with this wrong phase, 
what weight should it be given to minimise the errors ? 
Let the chosen weight be w. Let the true phase be 9. 
The transform of this one reflexion (hkl) and its 
conjugate (ZiZ) has the form 

@hkI(& y, 2) =;F cos (q~+%c(hs+ky+~z)) 

= 2F cos y/V, 

say, at a specified point in the transform, 
Then the error introduced into the Fourier 

d Qnkl = 2F [cosp-w co9 (y-a)]/V 
= 2F [cos y( 1 - w cos a) -sin y(w sin a)]/ V. 

(AlI 

Let ~2 be the mean value of ~V~A,~JL~, taken over all 
vdues of w. 

~2 = Fr[(l-w COSLX)~+W~S~~~~] 
= F2( 1 - 2w cos OL + ~2). 

rs is a minimum when 
(-4-V 

d?” =2Fz(w-cosa)=O. 
dW 

This gives, for the best weighting factor, 

wo=cos DC . (-44) 

Gaussian dktribution of error 
We now consider the case where the phase is un- 

certain and there is a Gaussian probability distribu- 
tion of phase errors 

P(m) = ij$exp 0s -- 1 1 202 645) 

Equation (A2) still holds for a given value of 01. 
The mean value of rr over the whole distribution 

of L% is 

F2 = 
F(u) =- 

s (232)40 --cQ 
(1+~2-2~~0~4exp 

Using the result 
(A61 

s 

00 
e --02=* cos bx dx = rcGf exp ( - b2/4a2}/2a 

0 

this simplifies to 

;;i(u)=Fs[l+ws-2w exp {-&us]]; (A7) 

a: = 2F‘J(w - exp { - +us}) ; WV 

and the best weighting function is 

wo = exp {-j&} , WV 
which approximates to (A4) with ~=a, for small 
values of ct. 

Substituting this value back into (A7) gives 

z=Fs[l-exp (-c?}] . (Al’3 
53. 
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